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We study the role of the Jacobian arising from a constraint enforcing the non- 
linear relation g = pV, where p, g, and V are the mass density, the momentum 
density, and the local velocity field, respectively, in the field-theoretic formula- 
tion of the nonlinear fluctuating hydrodynamics of simple fluids. By investigat- 
ing the Jacobian directly and by developing a field-theoretic formulation 
without the constraint, we find that no changes in dynamics result as compared 
to the previous formulation developed by Das and Mazenko (DM). In par- 
ticular, the cutoff mechanism discovered by DM is shown to be a consequence 
of the 1/p nonlinearity in the problem, not of the constraint. The consequences 
of this result for the static properties of the system are also discussed. 

KEY WORDS: Field theory; nonlinear fluctuating hydrodynamics; idealized 
glass transition. 

1. I N T R O D U C T I O N  

The development of the appropriate field-theoretic treatment for nonlinear 
fluctuating hydrodynamics (NFH)  of simple fluids is a more subtle enter- 
prise than one might first imagine. If one develops a theory for simple fluids 
including the complete set of conserved fields, the mass density p(x), the 
momentum density g(x), and the energy density ~(x), then one finds Itl that 
one must include multiplicative noise 121 in order to gain consistency with 
thermodynamics. This surprising result is associated with the connection 
between the fluctuating energy, entropy, and temperature. In the case 
where the energy is not included in the set of slow variables, one still finds 
technical problems in developing the associated field theory. These 
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problems are associated with the form of the kinetic energy density g'-/2p 
resulting from Galilean invariance. This 1/p factor can be identified with 
the nonlinear relationship between the momentum density and the local 
velocity field: V ( x ) =  g(x)/p(x) and, at first sight, seems to complicate the 
problem considerably. 

In ref. 3 (DM), the N F H  of compressible fluids was studied as a 
model for the glass transition. A field-theoretic formulation of the problem 
was developed by generalizing the standard Martin-Siggia-Rose (MSR) 
method ~41 to include the nonlinear constraint between g(x) and V(x). In 
the functional integral formulation described in ref. 3, this constraint was 
enforced by introducing an auxiliary velocity field V(x and inserting a 
delta-functional constraint, 

• @ V ( x )  8(g  - p V )  (1)  

Enforcing the relation g = pV eliminates the 1/p nonlinearity in the kinetic 
energy and yields a polynomial action in p(x), g(x), and V(x), which in 
turn allowed one to carry out a perturbation theory expansion with 
standard renormalization schemes. The effects due to nonlinearities on 
various physical quantities were then calculated at the one-loop order and, 
as a result of a systematic perturbative expansion, it was discovered that 
there is a nonhydrodynamic correction that cuts off the sharp nature of the 
idealized glass transitionJ 6~'2 This result has the important consequence 
that dense fluid systems remain ergodic for all values of the density and 
temperature, although the density feedback mechanism does drive the 
viscosity to large values. 

Recently Schmitz et al/8~ suggested that a more faithful representation 
of the original Langevin equations requires that the constraint should be 
enforced by using, instead of Eq. (1), the identity 

= IlplL I ~V(x),~(g- pv) 

(2) 

(3) 

where Ilpll is the Jacobian resulting from the change of variable in the delta 
functional. It was argued in ref. 8 that the cutoff mechanism found by DM 
may be an artifact resulting from their use of the contraint (1) rather than 
Eq. (2). Since these constraints differ only by the Jacobian factor IIPlI, this 

' For a recent review of theoretical developments see ref. 7. 
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is equivalent to saying that the cutoff mechanism is eliminated if one 
includes the Jacobian factor into the development. We show here that this 
is not the case. 

We can evaluate the Jacobian IlPll directly by expressing it in terms of 
an integral over Grassmann fields. 19~ Inserting this result into the DM 
action, we will be able to show that it does not play any significant role on 
the dynamics. We then develop a similar functional integral formulation to 
the one in ref. 3, but without introducing any constraint. The 1/p non- 
linearities are expanded as a power series in 6p = p - P0, and by comparing 
our perturbation theory results with those of ref. 3, we will be able to see 
explicitly the role of the Jacobian. We find that the two formulations are 
equivalent at the one-loop order of the perturbation theory and the 
Jacobian has no dynamical effects at this order. This seems perplexing, 
since it is clear that the Jacobian does influence the static equilibrium 
behavior generated by a general effective Hamiltonian. The resolution to 
this apprent contradiction is that the dynamics of a simple fluid, generated 
by a Langevin equation, is insensitive to changes in the chemical potential. 
It appears, at least to lowest order, that the effects of the Jacobian in 
question can be absorbed in the chemical potential and do not directly 
affect the statics generated by the Langevin equation. 

In Section 2 we give a brief review of the formulation in ref. 3 just to 
collect some results needed for our discussion. In Section 3 the Jacobian is 
expressed as a Grassmann integral and the usefulness of this formulation is 
discussed. In Section 4 the theory is formulated without introducing the 
velocity field and the one-loop equivalence between the two formulations is 
studied in detail. The static theory is described in Section 5. 

2. BR IEF  R E V I E W  OF D M  

Our starting point is the set of generalized Langevin equations for 
compressible fluids for the set of flow variables {p(x),g(x)}. Following 
standard procedure, Itm we obtain the continuity equation for the 
conservation of mass 

Op _ - V  -g (4) 
Ot 

and the generalized Navier-Stokes equation for the conservation of 
momentum, 

§  Is/ 
at p .j J 
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In Eq. (5), Fu[6p] is the potential energy part of the effective Hamiltonian 
given by 

F=FK+Fu (6) 

where the kinetic energy FK is 
-) 

In ref. 3, the simple choice of F,,, 

,4 )2 
F,,[6p] = I dax 2 (6p (8) 

was used, where A-J-po/c~ is the flat static structure factor, Po is the 
average mass density, and Co is the bare sound speed. This simple quadratic 
part of F,  then gives the pressure nonlinearity in the Langevin equation 
which is responsible for the density feedback mechanism of the glass trans- 
ition. 16~ In general, Fu can be any local functional of 6p and the spatial 
derivatives of 6p. By including the derivatives of 6p, we can probe the effect 
of the spatial correlations in the system on the dynamics. The dissipative 
matrix in Eq. (5) is given by 

Lu(x) = -r/o(~V;Vj + 6~iV 2) - (oViVj (9) 

where r/o is the bare shear viscosity and (o the bare bulk viscosity. For later 
use we define the bare longitudinal viscosity Fo = (o + ~qo. The noise Oi is 
Gaussian with variance 

(Oi(x,t)Oi(x',t'))=2ksTLii(x)b(x-x')6(t-t') (10) 

These Langevin equations can be put into a field-theoretic form 
following the standard MSR procedure/4"s'j-'~ It essentially amounts to 
introducing a hatted variable ~ for each field ~,=p,  g to enforce the 
equation of motion and integrating over the Gaussian noise to yield a 
quadratic action in ~. The generating functional without source terms is 
given by 

; ~1~ 9(k e -stq''(~ (11 ) Z =  

where the action S[q/, ~],  with the notation 1= (x~, t~), is given by 

+i~i ~i +oVi,~p 2V~ + 2 L / j ( I )  (12) 
J ./ 



Field Theory for Dynamics of Simple Fluids 1021 

In ref. 3, the lip nonlinearities are removed by using Eq. (1) 
representation of a delta functional, 

and the 

(13) 

so that the generating functional in ref. 3 can be expressed as the functional 
integral over ~ and ~, where 7 t =  p, gi, Vi. Denoting hereafter the results 
from ref. 3 by the superscript I, we have 

Z ~ll = ~ ~ ~ ~ ~ e-s,J[ v,. § ( 14) 

where S(Xl[~, ~'] is given by 

30)[~11, ~J]:fdl {~ij gifl-'tij(1)gj-Fi[J[~ll-FVl'g ] 
. [-Og~ 6F,, ] +i~g,L-~l+OVil +2Vf(pV~Vj)+ELo(1)Vj ~P j J 3 

+ i'V �9 (g-- pV)} (15) 

The perturbative expansion for a polynomial action of this form is 
standard. The nonlinear corrections are given in the form of the self- 
energies S,/j modifying the inverse linear propagator [-G~ ~ through 
Dyson's equation, 

G~-p' = [G~ ~-# ' -X,t~ (16) 

where G,~= (~,~utj) .  Detailed calculations of the self-energies were 
carried out in ref. 3. Here we list the results for the density response and the 
correlation functions. In the Fourier-transformed space, 

Ill (17) G,,,~(q, co) = p(q' co)co + iL(q, co) 
Din(q, co) 

2~ -Jq2p2(q, co)/:(q, co) 
GC')~l(q' co)= ID~tl(q, co)l-" (18) 

where 

p(q, co) V Po - iX]~.(q, co) (19) 

L(q, co) = qZFo + " ~') tX~,v( q, co) (20) 

L(q'co)=q2F~ { X:~(q'co,+(F~ Po / (21) 
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and 

"~ ~ ( I )  ' ( I )  D")(q, 09) = p(q. co){ co z - q-c a - S~,,(q, co) } + iL(q. o~){co + tqX c~p( q, co) } 

(22) 

Here all the self-energies are their longitudinal parts. The density feedback 
mechanism is realized by calculating the one-loop self-energies contributing 
to the dynamic viscosities, L(q,  09) and L(q, co), which are '31 quadratic in 
the density correlation function. ~6) Without the nonhydrodynamic correc- 
tion due to the self-energy r t ! , t , ,  09), the response function is the same 
as the one that gives the density feedback mechanism. Thus Xt~],(q, co) 
provides the DM cutoff. As mentioned in Section 1, and as indicated by the 
subscripts, the cutoff is related to the 1/p nonlinearities and the constraint 
between g and V. 

3. EVALUATION OF THE J A C O B I A N  

The question arises: what changes result if one uses the constraint (2) 
rather than Eq. (1) to introduce the velocity field? It should be clear from 
Eq. (3) that the only changes in the DM action come from the Jacobian 
factor I[PlI. This quantity can be represented as 

i 
(23) 

where qi and r/i are Grassmann fields. We must, as indicated below, be 
careful in using any unregularized representation of the Jacobian like 
Eq. (23) in the functional integral formalism, since it might not preserve 
causality. If we include Eq. (23) in the DM formulation, then the 
appropriate generating functional is given by 

(24) 

where the action is given now by 

=-'~[ ~r/, ~'/, ~, 4"] = S(1)[-~, ~/2 "Jr- f d l  E rT,(l ) p(1)  q , ( l )  
i 

The only linear propagator involving 7/or ~/ is 

G~ co)= o w) ~o -G.so,(  q, = - -  
Po 

(25) 

(26) 
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~I TI p p 

Fig. 1. The one-loop diagrams generated by the nonlinearity due to the Jacobian. The 
Jacobian is regularized such that the first diagram vanishes. 

The new nonlinear term arising from the Grassmann fields is of the form, 
,~P ~ i  f/;r/i. This gives, at one-loop order, only two new self-energy diagrams 
(Fig. 1). The first appears to give a contribution to Z],~,, which clearly 
violates causality. We note that the self-energies between two unhatted 
variables s are indeed equal to z e r o  3 in the original DM formulation in 
accordance with causality. Thus Eq. (23) has to be regularized. We note 
that if we use, instead of Eq. (23), 

Iholl,= @r /~f /exp  d l ~ f / ~ ( 1 )  e~-7~l+p(1 ) r/~(1) (27) 
i 

with a time derivative with a very small coefficient e, then the first diagram 
of Fig. 1 vanishes, since it is in the form of a time integral of the product  
of a retarded and an advanced propagator.  Furthermore,  as will be clear 
later in this section, the regularization given as Eq.(27)  guarantees 
causality to all orders of perturbat ion theory, i.e., X~,q, remains to vanish to 
all orders. 

The second diagram in Fig. 1, however, does give a finite contribution. 
In the limit e ~ 0, we have 

fl-~ Z,~,,,(q, co) = - Z,r,~,(q, co) = -6~j---v- 6A(O) =-- 6~iZ (28) 
c~ 

where 

6A(0) = r |A dak 

(2x) a d 

3 The one-loop contributions to the self-energies Xr between two unhatted variables come 
from either the cubic nonlinear terms t#ffff or the quartic nonlinear term ,~qJ~,t k in the DM 
action. The former generates a one-loop diagram that can expressed as a time integral of the 
product of an advanced and a retarded propagator, which vanishes. The contribution from 
the latter comes from the ,~b loop, which is exactly canceled by the Jacobian (which is 
unrelated to the one discussed in the present paper) originated intrinsically from the 
functional integral formulation of the MSR method. Therefore, at one-loop order, X~,~ = 0. 
This can be shown to be true to all orders. "2) 
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with the large-momentum cutoff A. This self-energy gives a correction to 
the correlation function between r/ and ~, 

t~q 
G,~,,j(q, o 9 ) = -  (29) 

p o - Z  

We note that there are no such self-energies at one-loop order that link the 
Grassmann fields to the p, g, or V. This fact, together with the vanishing 
of the first diagram in Fig. 1, shows that the inverse propagator matrix in 
Eq. (16) is in a block-diagram form with the ~u~b block being identical 
to those given in DM formulation. Inverting the inverse propagator, we 
find that there are no changes, at one-loop order, in the response and 
correlation functions for p, g, and V due to the Jacobian. 

This result, in fact, can be generalized to all orders of perturbation 
theory by deriving the Ward identity from the invariance of the action, 
Eq. (25), under q; --, ei~/; and f/i --* e -~"f/~ for any constant tr. Infinitesimally 
this symmetry transformation reads 

6tl, = ( ia)q .  6Vl,= ( - - ia )q .  6 ~ .  = 6~'. = 0 (30) 

Introducing the sources J , ,  J~ for ~u, ~b= and the Grassmann sources (i, ~i 
for q~, f/~, respectively, into the generating functional, Eq. (24), we have 

t?, O] 

Since the action S and the integration measure in Eq. (31) are invariant 
under the transformation, Eq. (30), the variation of the source terms must 
vanish if we change the integration variable by Eq. (30). This yields the 
following Ward identity: 

6 ) ,~ } fd, z (32) 

Taking a derivative of Eq. (32) with respect to ~j(3) and then with respect 
to J.(2) and setting all the sources equal to zero. we have 

62 _ ~ ]  j 
0= 6J~(2) 6~j(3) z[J, J, & =J=r162 = - 2 [ 0 ]  G~,~,(2, 3) (33) 
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Similarly, we can easily derive 

G~,. = Go. = Goo = 0  (34) 

It follows that, as in the one-loop case, the inverse p ropaga tor  is block- 
diagonal. Let us now investigate whether the nonlinearity, ~P~-~if/ir/i 
contributes to the self-energies in the ~ block (Z'~,v,, s247 X§ and 
Zo§ To do this, we first note that  Eqs. (33) and (34) can be understood 
as a direct consequence of the charge conservation for t 7, f / imposed  by the 
symmetry,  Eq. (30). We can imagine a charge flowing through the r/f/lines 
in the perturbat ive diagrams, say from r / to  ~. The vanishing of the correla- 
tion functions with only one external r/ or f/, Eqs. (33) and (34), then 
directly follows from the charge conservation. The internal r/f/ lines must 
then form a complete circle following the charge flow. The most  general 
diagram involving r/, f/ that can contribute to the self-energies in the ~u~, 
block is drawn in Fig. 2. At one-loop order, it is just the first diagram in 
Fig. 1, which vanishes because of the regularization, Eq. (27). We have, in 
fact, the same situation for the general d iagram in Fig. 2. This diagram is 
expressed in terms of the integral over l loop momen ta  and frequencies, 
where l is the number  of the loops in the diagram. Now we inverse Fourier  
t ransform the zeroth-order  r/f/ p ropagators  to get the time integral over 
t~ ..... t,,, where n is the number  of G~ in the diagram. Then we can 
integrate over one frequency, which yields the delta function 6(~i  tg); 
therefore we have the following factor inside the integral over l momen ta  
and 1 - 1  frequencies: 

I o aoo(,,,)=o dt~6 ti G,o( t l )""  
i = 1  i 1 

(35) 

P 

P P 

Fig. 2. The most general diagram generated by the nonlinearity due to the Jacobian without 
external Grassmann fields. The arrow indicates the charge flow. 
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0 * which vanishes due to the regularization, Eq. (27), since all the G,~r~(ti)s are 
advanced propagators. This shows that the nonlinearity involving the 
Grassmann fields does not affect the self-energies in the ~ '  block, 
especially X ~  =0,  even after including the regularized Jacobian, Eq. (27). 
We can therefore conclude that the Jacobian, included in the DM action 
as an integral over the Grassmann fields, as in Eq. (25), has no effect on 
the correlation and response functions for p, g, and V at all orders of 
perturbation theory. 

4. F O R M U L A T I O N  W I T H O U T  V F IELDS 

Schmitz et al. cSj have suggested that the cutoff mechanism found by 
DM may be somehow introduced artificially through the implementation 
of the constraint condition�9 By looking at the original theory without the 
constraint within perturbation theory, we show that this worry is without 
foundation�9 Starting from the original action (12), we expand 1/p as a 
power series in 6p. Keeping nonlinear terms that are relevant to the 
one-loop order, we have in the action, Eq. (12), 

~ v j ( g i g J ) - Z v i ( g i g J ~ - Z v j ( g i g J ( ~ P ) . ) +  . . .  (36) 

+ --. (37) 

Let us denote the results of this formulation by the superscript II. Only 
three kinds of self-energies are generated by the nonlinearities: Z'm~t,~ 09), ~,p x ' l ,  

X~,~,(q,~U~ co), and X~l~ ~,~,,,4, 09)�9 Using these self-energies, we can represent 
various correlation and response functions. For example, 

�9 2 _ _ y " ( l l )  (q, 09 )  

(tl~ D{tt)(q,  09) 
G~,~ i (q, 09)=09+t(Yo/Po)q (38) 

( l lJ  
cxt~ q'-{2fl--~Yoq2-Xs~ (q, 09)} (39) 

G,,,, (q, 09)= ID(")(q, 09)1-' 

where 

D (n) (q ,  09) = 092 2 2 (II) - q  Co- X ~v (q, 09) + iY~ (40) 
Po 

We note that the number of self-energies is reduced from seven to three 
compared to the previous case, since only two variables, p and g, are 
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considered here. But the number of diagrams we have to consider for 
each self-energy is increased according to the appearance of the new 
nonlinearities in Eqs. (36) and (37). At one-loop order, by comparing the 
nonlinear vertex structures of the two actions, Eq. (12) with the expansions 
(36), (37) and Eq. (15), and by using the relations among the linear 
propagators 

Foq 2 
G~ co)= G~ co) (41) 

Po 

Foq'- O , L  O , L  G~:, (q, co) = G~ (q, co) (42) 
Po 

9 

0,  L G~.f,(q, c o ) = i + F o q  - o,L , Gg e (q, co) (43) 
Po PG 

with Fo being replaced by r/o for transverse propagators, we find that the 
new diagrams for each self-energy of (II) are in one-to-one correspondence 
to the diagrams of the corresponding self-energies of (I) that are not 
present in formation (II). For example, in Fig. 3, the first five diagrams 

(ll) O) 

v p ~ p  

^ v ,~ 

g ,~ v 
. v @ v  

v /' 

1 

~ ;-<D ^ P P 

g" g , 7 o  V g P 

;CSF-. - ~ v Po v 

Fig. 3. The detailed correspondence between the one-loop diagrams contributing to S~I ~ and 
X~t~ + (Foq~-/po) ,S~!./,. See Eq. (44). 
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contributing to Z~l] ~ reproduce the corresponding diagrams of Z ~'~ The .~p '  

remaining diagrams contain the ~gp vertex from Eq. (37) with ~ on exter- 
nal legs, which give us a factor of Fo q2/po for each diagram. Other than 
this factor, we find that these are the diagrams of the self-energy Z "t!l Thus, vp" 

at one-loop order, we have 

X~.~t_ Foq 2 
- Z.~,,(q, ~,, ,q ,  09) - -  II~ co) + Zcl!.~,(q, o9) ( 4 4 )  

Po 
Similarly, as seen from Figs. 4 and 5, we find that 

/-, , 
Zm~(q, og)= I r l I ~  o9) ~ o9) (45) 

Po PG 

' F o q -  ( I 1 )  _ (t) - +roq-~ll~, + X,~ (q, o9)= o9) o9) Z~,~,~(q, o9) Z~(q ,  .~4q, 
Po Po 

( Foq2~ 2 
+ s;'l:.(q, co) 

2 

= ~tq,  og)+\--P--~o--o / s co) (46) 

(I0 O) 

^ ~ 
p ~ p  g ~ p-~- 

^ P g I ^ P V 

g ( - ~ - , , j ~  , ^ v , , ~ - - x ~ "  
;" g ~ g  ~ " p-~ g ~ v  v 

~" Q ~ g  g ~ ~ V ~ v  v 

^ V P 
= V ~ V 

~ g ~ v 

g ~ r=q 2 

Fig. 4. The detailed correspondence between the one-loop diagrams contributing to the 
self-energy in Eq. 145). 
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since .~Mq, 03)= - - - r :~q ,  03). Using these relations, we can express the 
response and correlation functions in formulation (II), Eqs. (38) and (39), 
in terms of the self-energies in formulation (I). We first note that, since we 
are dealing with one-loop corrections, we can neglect quadratic and higher- 
order terms in Z's. Inserting Eqs. (44) and (45) into Eq. (40), we have 

D~II~(q, 03)=p l(q, 03) D~l~(q, 03) (47) 

From Eqs. (38), (39) and using Eqs. (44)-(46) and (47), we have, at one- 
loop order, 

G I I I I (  - 03)-- (I)_ 03~ (Itl 09) (48) G m, (q, ,,,,q, ~,/~ ,q, - Gm~( q, J, ~)  = Glint ~ 

which shows that the two formulations (I) and (II) are equivalent to first 
order. In particular, the DM cutoff is recovered, as seen from the second 
term in the right-hand side of Eqs. (44) and (47). Therefore the cutoff is 
generated not by a particular form of a constraint condition, but by the 
intrinsic 1/p nonlinearity in the problem. 

(to) (0 

o 9 ~, P V 

^ p p ^ 

@' P ~ Po g v v 

Fo qz g P ^ V p A ~0;~ oo o ~ v  
P g Fo q2 

~ 0 :  ~ Oo ~ v  ~ "  
roq z 

;0;~ O o ~-~Z)~ ~ 

~0;~ ,%, ~ ~  .v 

~ ~ (~oe'~ ~ ,, ~ v ,. 

Fig. 5. The detailed correspondence between the one-loop diagrams contributing to the 
self-energies in Eq. (46). 
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The renormalizations of various hydrodynamic quantities for the two 
formulations are also equivalent. For example, the renormalized sound 
speed, for both (I) and (II), is given by 

c2=co + lim 1Z~,,(q,~) (49) 
q . , , , -  o q 

But, because of Eq. (44), lim(l/q)X~=lim(1/q)Xl)~l'. This quantity was 
evaluated in re[ 3 to show that 

lim 1X~t~(q, ~)---0 (50) 
q.,,~0 q 

i.e., there is no one-loop correction to the hydrodynamic sound speed. 

5. S T A T I C  T H E O R Y  

We have investigated in Sections 3 and 4 the role of the Jacobian in 
the dynamics governed by the Langevin equations, and found, to lowest 
order, that there are no changes in the dynamics due to the Jacobian. Let 
us now look at the static equilibrium behavior. The static equal-time 
averages of the fields ~Pi are calculated with respect to the effective 
Hamiltonian, Eq. (6): 

(~,,~/) =I ~ e /"~,~//z (5:) 

where Z = ~  ~ e -/~g. Nonlinear corrections come from the 1/p factor in 
the kinetic energy, Eq. (7). We note that the potential energy part of the 
effective Hamiltonian F,, appears in the Langevin equation only in the form 
of pVi(6F,,/6p). Therefore a chemical potential-like term in F,,, which is 
linear in p, does not affect the Langevin equation. But, in the statics, such 
a term controls the renormalizations of the average ( p )  of the mass 
density and the sound speed c. To be specific, let us take the simple 
example 

A , 

which gives the same Langevin equation as Eq. (8). The one-loop [i.e., 
O(fl J)] corrections to ( p )  can be calculated by expanding p = ( p ) +  Ap 
and integrating out the g field. As a result, we have the following one-loop 
effective action in zip: 

F~rr[Ap]=~ A + f l - ' ~ - ~ S j ( d p ) 2 +  A ( p > - p - - f l  2 < p > j ( A p ) ( 5 3 )  
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Then ( p )  is determined by setting the linear term in Ap to zero. Thus we 
have 

( P )  = P o +  [3-'P. + 0([  3-2 ) (54) 

p, dan(O) (55) 
pj =-~--+ 2Apo 

where /~=Apo+[3-~It~ +0([3 2). The sound speed is given by the usual 
thermodynamic result, 

c2= [3-' (p ) (  dp Ap ) - '  (56) 

The derivation of Eq. (56) from the Langevin equation follows using the 
Fokker-Planck description of the problem, t ~  The one-loop correction to 
the static density-density correlation function can easily be read off from 
the quadratic term of the effective action, Eq. (53): 

1 i d6.d0. ) -2) 
f l( dp Ap ) =-~-- f l -  2A~_po + O(fl (57) 

Therefore, 

c~=Co+[3_, @, + d6,,(O)'] 
Po / 

+ 0([3 -2) (58) 

This is consistent with the dynamics result, Eq. (50), if we choose 
It l = -d6a(O)/po. Thus, in some sense, the system selects the corresponding 
static limit as it evolves through the Langevin equations. The above 
discussion indicates that any effect the Jacobian might have on the static 
renormalization can be absorbed in the chemical poitentiaI kt chosen by the 
Langevin equation. 

6. C O N C L U S I O N  

We have shown that the Jacobian, Eq. (3), arising from the constraint 
enforcing the nonlinear relation between g and V does not change the 
dynamics of Das and Mazenko. In particular, the functional integral 
formulations with and without a constraint are shown to be equivalent at 
least to lowest order. Therefore the cutoff mechanism discovered in ref. 3 is 
a genuine effect of the lip nonlinearity in the problem and not an artifact 
of the particular form of the constraint condition. 
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